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This work considers the flow of a Newtonian fluid in a two-dimensional channel filled with an array of
obstacles of distinct sizes that models an inhomogeneous medium. Obstacle sizes and positions are defined by
the geometry of an Apollonian packing �AP�. The radii of the circles are uniformly reduced by a factor s
�1 for assemblies corresponding to the five first AP generations. The region of validity of Darcy’s law as a
function of the channel Reynolds number is investigated for different values of s and the dependency of the
flow pattern and permeability with respect to porosity is established. Our results show that the semiempirical
Kozeny-Carman scaling relation is satisfied provided the effects of the apparent porosity and s-dependent
formation factor are properly considered.
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The flow through a porous medium �1–3� is of importance
in many practical situations ranging from oil recovery �4,5�
to chemical reactors �6� and has been the object of study for
a long time in various fields of science and engineering. In
many practical situations, the analysis of flow in porous me-
dia requires a knowledge of how the flow varies with the
pressure gauge. The determination of this relationship is only
possible if some physical quantity that represents the resis-
tance of flow through porous media is known. This resistance
can be expressed in various ways, e.g., for single-phase fluid
flow, the friction factor or the Darcy permeability k �1–3�,
which is related to the average flow velocity v, viscosity �,
and pressure drop �P over a channel segment of length L by

v = −
k

�

�P

L
. �1�

With the huge advance of numerical methods in computa-
tional fluid dynamics �CFD� �7,8�, numerical simulations
based on detailed models of pore geometry and fluid flow
have been used to predict permeability coefficients as well as
to validate semiempirical correlations obtained from real po-
rous materials. One useful approach consists to investigate
how the presence of obstacles placed in a channel influences
the value of k. Until now, most studies have considered the
presence of equally shaped obstacles randomly distributed in
a regular channel �9–13�. Although results for three-
dimensional models have more direct relationship to actual
cases, studies considering simpler two-dimensional situa-
tions are able to provide results that are insightful and easier
to visualize.

In this work, we investigate the behavior of a fluid flow-
ing through a channel with obstacles of different sizes, dis-
tributed in a nonperiodic array. Such requirements can be
geometrically defined by means of an Apollonian packing
�AP� �14�. In two dimensions, such geometrical construction
entirely blocks the flow if maximum tangent circles are con-
sidered. Thus, the radii of the circles must be multiplied by a
factor 0�s�1 in order to allow for the fluid to flow. The
flow properties depend on the porosity �or void fraction� �
=��s ,g�, where g denotes the finite AP construction genera-

tion. It is important to notice that, once a given value of �
can be obtained by adequately tuning distinct values of s and
g, the bare value of � is not sufficient to characterize such
flow properties. Indeed, our calculations show that these are
influenced by the generation g and the reduction factor s in
quite different ways. Our main finding is to show that a
scaling relation between k and � is valid provided we use a
generalized form of the Kozeny-Karman �KC� relation
�2,15–18�. Of course such relation is limited to the range of
validity of Darcy’s law, which can be expressed in terms of
the largest value Remax for which Eq. �1� is verified. Here, Re
denotes the channel Reynolds number, as we define later.

Under the assumption of the validity of Darcy’s law, the
equivalent resistance and the permeability of a porous me-
dium has been previously modeled as an AP in the lubrica-
tion approximation �19,20�. Due to the scaling invariance, it
was possible to derive a recurrence relation between these
quantities for successive values of g. However, this type of
approach does not fully account for fluid dynamical details
of the flow at the pore level.

The geometrical setup for our CFD investigation consists
of a two-dimensional channel of height H and length L
=32H, with a constant pressure gauge �P0 forcing the fluid
to displace from left to right. A fixed coordinate system is
placed at the center of the channel, so that the coordinates of
the channel corners are ��L /2, �H /2�. The obstacles are
placed only in the square limited by the points
��H /2, �H /2�. Initially four equally sized tangent circles
of radius Rg=1=H /4 are placed inside the channel, so that
their centers lie on the points C1��H /4, �H /4�. In the
second generation g=2, three new circles are added: the
first one, with radius R2=H /9.697, has its center at the
origin of our coordinate system. The centers of the other
circles of radius R2=H /16 are placed at the points C2
= �0, �H /2.286�. For g	2, one tangent circle is added to
each free space bounded by three tangent circles. In this
process, we consider the channel walls as circles of infinite
radius with centers placed at the infinite.

The solution to this problem is provided by the Descartes
Circle Theorem and Complex Descartes Theorem �21,22�:
given three mutually tangent circles in three distinct points,
the curvature of which expressed in terms of their radii R1,
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R2, and R3 by bj =1 /Rj, there exists two circles that are tan-
gent to each one of the them. Their curvatures b4 are given
by the roots of

�
j=1

4

bj
2 =

1

2
��

j=1

4

bj�2

. �2�

Further, the coordinates �xj ,yj� of the centers of each of such
four tangent circles satisfy

�
j=1

4

�bjzj�2 =
1

2
��

j=1

4

bjzj�2

, �3�

where zj =xj + iyj. The b4 solutions of Eq. �2� fulfill the fol-
lowing oriented circle convention: the normal at the circle
tangent point has a positive curvature if it is directed out-
wards, and a negative curvature if it is directed inwards.
Thus, a negative b4 corresponds to the external circle con-
taining three circles in its interior. The geometry of our
model is shown in Fig. 1, for s=0.5 and g=3. Note that the
position of the circle centers are left unchanged when the
radii are multiplied by s�1.

As anticipated, the porosity � depends both on the reduc-
tion parameter s and on the packing generation g. This is
illustrated in Fig. 2, where we draw the dependence of �
with respect to s for different values of g. As we will see,
despite the fact that the differences in � become smaller for
larger values of g, these small obstacles produce relevant
changes in the flow patterns. We considered s� �0.3,0.9�,
and g=1, 2, 3, 4, and 5. When g=5, the packing encom-
passes 137 circles, and the ratio of the smallest to the largest
circle radius is 1/97.

The detailed fluid dynamics through the pore space delim-
ited by the AP is calculated considering steady-state flow and
incompressibility in a two-dimensional framework. This is
obtained by numerical integration of the continuity and
Navier-Stokes equations,

� · v� = 0, �4�


v� · �v� = − �P + ��2v� , �5�

where 
 is the fluid density. Here, we consider overall non-
slip boundary conditions at the channel walls and at all ob-
stacle surfaces. The boundary conditions are constant veloc-
ity at the channel inlet vi and constant pressure at the outlet.
This geometry defines the channel Reynolds number Re
=
viH /�. To obtain a more accurate measure of the AP in-
fluence on the flow, and to avoid the possible presence of
back flow effects, the calculation of the overall pressure drop
is based on the average pressure values at x=−3H /2 and
x=5H /2.

The solution of Eqs. �4� and �5� for the velocity and pres-
sure fields in the whole domain is obtained through discreti-
zation by means of the control volume finite-difference tech-
nique within a CFD environment �23�. Due to a strong
reduction in the circle radii as g increases, the integration of
Eqs. �4� and �5� within the channel central square must be
carefully done. When s is large, most difficulties are related
to establishing a mesh within the narrow channels. On the
other hand, when s is small, it becomes difficult to keep the
precise geometrical features of very small circles, specially
for larger values of g. In both situations, the demand for very
fine meshes constitutes the computational limiting step of the
integration process. Here, we use unstructured meshes, lo-
cally adapted to the constraints expressed by the proper
boundary conditions and convergence of the numerical solu-
tions �24�.

Some typical flow patterns resulting from the numerical
integration are shown in Fig. 1. The flow through the central
part of the packing is clearly favored. However, the presence
of small circles introduced at larger steps of construction of
the packing are effective in deviating the flow through the
larger channels lying at larger distances from the channel
center.

To broaden the range of our discussion, it is convenient to
consider also the dependence between �P and v beyond the
Remax limit. In such case, nonlinear corrections to Darcy’s
law are needed to correlate flow properties. The approach we
adopt here is to use the ansatz

FIG. 1. �Color online� Model of a porous media with obstacles
of different sizes based on an AP, together with typical flow pattern
through the packing for s=0.5 and g=3. The colors ranging from
blue �dark� to red �light� correspond to low and high velocity mag-
nitudes, respectively. Preferential channels depend more strongly on
g than on s.
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FIG. 2. �Color online� Dependence of porosity � with respect to
the reduction factor s for several values of g. The differences in the
values of � for fixed values of s decreases as g increases, as the
radii of latter generations circles become smaller.
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G = �H2 + �HRe + Re2, �6�

where G=−�PH2 /�vL is a dimensionless measure of the
hydraulic resistance �25�. The coefficient � corresponds to
the reciprocal of the linear permeability of the porous mate-
rial, and the two remaining terms with coefficients � and 
can be interpreted, respectively, as second and third order
corrections that should account for the contribution of iner-
tial forces in the fluid flow. For sufficiently low Re, Eq. �6�
reduces to Darcy’s law.

The values of the coefficients �, � and  have been ob-
tained by the least-squares method, while the results for G /�
are illustrated, for g=5, in Fig. 3. As the values of the coef-
ficient of the cubic term are always much smaller than those
of the quadratic term, we conclude that a generalized perme-
ability that incorporates second order corrections is sufficient
to describe the flow in the range of Re numbers of interest.

Several expressions have been proposed to quantitatively
express k in Darcy’s Eq. �1�, as a function of the medium
physical features. Among them, the most simple one is the
KC expression k=c0�3 /Sv

2, where � is the only independent
variable. Here, c0 is the so-called KC constant, observed to
lay in an interval ��0.2,0.7�, while Sv, the specific surface
per unit volume, can be expressed in terms of the specific
surface per unit solid material S0 as Sv=S0�1−��. With the
knowledge of the range of validity of Eq. �1�, the values of k
are evaluated for the selected values of s and g. In Fig. 4�a�,
we show the dependence of k /k0 with respect to � for dif-
ferent values of g, where k0=H2 /12 represents the empty
channel permeability. As expected, k assumes distinct values
when we hold � fixed but compare different values of g. The
absolute difference becomes relevant in the region of large �
�small s�, when the smaller circles introduced in the latter
generations cause significant changes in the flow patterns.

To verify whether the nonlinear dependence between k
and � can be explained by the quoted semiempirical KC
expression, we have to investigate the dependence of k /k0
with respect to �3 / �1−��2. Here we must take into account
the fact that �=��s ,g�, and explore the scaling relation
when one parameter changes and the other remains constant.

However, it is important to recall that two corrections must
be taken into account to adequately deal with the presence of
obstacles of different sizes. In first place, Fig. 2 shows that,
for finite values of g, the porosity does not vanish when s
	1, what contrasts with the requirement that k must vanish
in this same limit. Thus, to meet this condition, we introduce
an off-set value for the porosity dependence in Eq. �5�, i.e.,
for each value of g, we let �→�−��s=1,g�. Such a pro-
posal had already been suggested in the context of a perco-
lation approach to porosity evaluation �26�. The second
change refers to the formation factor S0, which is defined as
the ratio of the sum of obstacle perimeters to the area en-
circled by them. When the porosity change is due only to an
increase in the number of identical obstacles, S0 assumes a
constant value but, in the present case, S0=��g� /s, where
��g�=2�i=1

Ng ri /�i=1
Ng ri

2, and the values of ri are those of the
original AP tangent circles. Thus, Eq. �5� must be rewritten
as

kg�s,g�
k0

= A
s2

��g�2

���s,g� − ��s = 1,g��3

�1 − ��s,g� + ��s = 1,g��2 . �7�

The results shown in Fig. 4 clearly indicate that, with excep-
tion to large values of �, the values of kg�s ,g=const.� align
on straight lines for all values of s, when the right-hand side
of Eq. �7� is evaluated for g=const. and decreasing values of
s.

We investigated several properties of fluids in a channel
with obstacles of different sizes, aiming to understand global
effects on the flow induced by their presence. From a broader
perspective, this work contributes to establishing limits to the
validity of classical assumptions required for the derivation
of semiempirical relationships of flows in porous media. It
goes along with several studies that provide, with the help of
CFD techniques, much finer analysis of the dependence of
flow patterns in complex geometries by systematically solv-
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FIG. 3. �Color online� The hydraulic resistance G as a function
of Re for different values of s and g=5. Symbols indicate the values
at the left-hand side of Eq. �6�, while lines indicate the values ob-
tained by quadratic expansion. To plot all curves in the same axis, G
has been divided by �. Better accordance is achieved when s in-
creases and channels become narrower.
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FIG. 4. �Color online� The main panel shows the dependence of
k /k0 with respect to � for successive packing generations g=1
�circles�, 2 �triangles up�, 3 �triangles down�, 4 �diamonds�, and 5
�triangles left�. In the inset, dependence of kS0

2 /k0 with respect to
��−�0�3 / �1−�+�0�2 for g=3,4, and 5, where �0=��s=1,g�. The
straight line with slope 1.0 clearly shows that Eq. �7� holds with
very high degree of accuracy. Symbols for g=3,4, and 5 are, respec-
tively, square, circle, and diamond. In both plots, �=��s ,g
=const�.
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ing the equations of fluid motion in their complete form with
well defined boundary conditions. Other contributions have
concentrated on the use of a large number of obstacles of the
same size, randomly dispersed inside the channel, to model
the porous media. In the current work, inhomogeneity is
caused by obstacles of different sizes, ordered according to
the AP. By uniformly reducing the different radii we are able
to alter the value of porosity and permeability. We consid-
ered five different packing configurations, obtained by suc-
cessively increasing the generation at which the Apollonian
construction is stopped.

Our results indicate that the limit of validity of Darcy’s
law is very small �Remax�6 for small circles�, but it in-
creases both when the channels between obstacles have their
width decreased, and the number of obstacles increases. Out-
side the range of validity of Darcy’s law, our results for
linear and quadratic corrections in the value of k allow for a

good fitting quality. Our results for the dependence of the
permeability on porosity show that the KC semiempirical
relations is satisfied with a high decree of accuracy, provided
we include the effect of a porosity offset due to fact that flow
stops at a nonzero value of porosity.

Although we consider two-dimensional flows, our results
are interesting enough to explore other packing geometries,
in such a way to investigate the dependence of relative circle
radii that are introduced in higher order generations. Studies
in this direction are in progress.
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